Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Billions of people rely upon groundwater for drinking water and agriculture, yet predicting how climate change may affect aquifer storage remains challenging. To gain insight beyond the short historical record, we reconstruct changes in groundwater levels in western North America during the last glacial termination (LGT, ~20 to 11 thousand years ago) using noble gas isotopes. Our reconstructions indicate remarkable stability of water table depth in a Pacific Northwest aquifer throughout the LGT despite increasing precipitation, closely matching independent Earth system model (ESM) simulations. In the American Southwest, ESM simulations and noble gas isotopes both suggest a pronounced LGT decline in water table depth in in response to decreasing precipitation, indicating distinct regional groundwater responses to climate. Despite the hydrologic simplicity of ESMs, their agreement with proxy reconstructions of past water table depth suggests that these models hold value in understanding groundwater dynamics and projecting large-scale aquifer responses to climate forcing.more » « lessFree, publicly-accessible full text available June 11, 2026
-
Abstract Marine heatwaves have profoundly impacted marine ecosystems over large areas of the world oceans, calling for improved understanding of their dynamics and predictability. Here, we critically review the recent substantial advances in this active area of research, including the exploration of the three-dimensional structure and evolution of these extremes, their drivers, their connection with other extremes in the ocean and over land, future projections, and assessment of their predictability and current prediction skill. To make progress on predicting and projecting marine heatwaves and their impacts, a more complete mechanistic understanding of these extremes over the full ocean depth and at the relevant spatial and temporal scales is needed, together with models that can realistically capture the leading mechanisms at those scales. Sustained observing systems, as well as measuring platforms that can be rapidly deployed, are essential to achieve comprehensive event characterizations while also chronicling the evolving nature of these extremes and their impacts in our changing climate.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract The Pacific Decadal Oscillation has been suggested to play an important role in driving marine heatwaves in the Northeast Pacific during recent decades. Here we combine observations and climate model simulations to show that marine heatwaves became longer, stronger and more frequent off the Northeast Pacific coast under a positive Pacific Decadal Oscillation scenario, unlike what is found during a negative Pacific Decadal Oscillation scenario. This primarily results from the different mean-state sea surface temperatures between the two Pacific Decadal Oscillation phases. Compared to the cool (negative) phase of the Pacific Decadal Oscillation, warmer coastal sea surface temperatures occur during the positive Pacific Decadal Oscillation phase due to reduced coastal cold upwelling and increased net downward surface heat flux. Model results show that, relative to the background anthropogenic global warming, the positive Pacific Decadal Oscillation in the period 2013–2022 prolongs marine heatwaves duration by up to 43% and acts to increase marine heatwaves annual frequency by up to 32% off the Northeast Pacific coast.more » « less
An official website of the United States government
